Beyond AI Logo

量子ゆらぎから天の川銀河の形成史の解明を通じたAIの進展 New developments in AI through study of evolution of the Milky Way from initial quantum fluctuations to its assembly

構成メンバー

People

研究リーダー Project Leader
村山 斉 教授 Hitoshi Murayama Professor
東京大学 国際高等研究所カブリ数物連携宇宙研究機構 Kavli Institute for the Physics and Mathematics of the Universe, (Kavli IPMU)
研究者 Researchers
  • 高田 昌広 教授 Masahiro Takada Professor
研究員 Ph.D. Researcher
百瀬 莉恵子 Momose Rieko Mohammad Khaled Mardini Mohammad Khaled Mardini
研究生 Research Student
常盤 晟 Akira Tokiwa

ビデオ

Movie

課題

Challenges

天文ビッグデータのAI解析からから天の川河銀河から宇宙の大規模構造の起源を探る Exploring the origins of the Milky Way and large-scale structures in the universe by AI-assisted analysis of astronomical big data

宇宙には、太陽、銀河、銀河団、また銀河分布の網の目構造(大規模構造)の豊かな階層構造があります。これら宇宙構造は、非常に面白い、また不思議なシナリオで形成されたと考えられています。まず、宇宙がバクテリアよりも小さかった宇宙極初期に、量子力学の不確定性関係が予言する“量子ゆらぎ”が宇宙の始まりの大爆発“インフレーション”とよばれる急激な膨張で引き延ばされ、宇宙構造の種を作りました。その後、正体不明のダークマターの重力で、その種ゆらぎが成長し、ダークマターが集合した領域に、星、銀河が作られ、銀河が合体・吸収を繰り返し、より大きな宇宙構造を作ってきました。さらに、“最近”の宇宙(約70億年前)では、これも謎のダークエネルギーによる加速膨張が始まり、構造形成の成長を妨げてきたというシナリオです。すばる望遠鏡をはじめとする天文ビックデータに機械学習・AIの手法を適用し、我々の住む天の川銀河から宇宙の大規模構造の起源を明らかにし、ダークマター、ダークエネルギーの謎に迫るのが本研究の目的です。
私たちが住む天の川銀河は、無数にある銀河のなかでも特別かつ唯一な存在であり、その起源を調べることは天文学の最も重要な研究テーマの一つです。天文学データの進展、計算機性能の向上、機械学習・AIなどの高度な統計的な技術の発展により、10億個にも及ぶ星のビッグデータを用いて天の川銀河の起源を探る研究が世界中で進展しています。また、これは宇宙の始まりの“量子ゆらぎ”や、宇宙を構成する物質の約86%を占めると言われる“ダークマター”の存在・性質といった、同じく重大な謎とも密接に関連しており、広く学術分野への貢献が期待できます。

The universe has a vast hierarchical structure spanning from suns, galaxies, clusters of galaxies, to web-like structures (large-scale structures) seen via galaxy distribution. These cosmic structures are believed to have formed in a most intriguing and mysterious scenario. At the very beginning of the universe, when the universe was no bigger than a bacterium, “quantum fluctuations” predicted by the uncertainty principle of quantum theory were stretched out by a rapid expansion called “inflation,” an accelerating cosmic explosion, to generate the seeds of cosmic structures. Then, the gravitational force of mysterious “dark matter” amplifies the primordial seeds fluctuations, driving cosmic structure formation. In this process small-scale structures such as stars or small galaxies first form in places where dark matter clusters and then larger-scale cosmic structures hierarchically form as a result of mergers and accretions of smaller structures. In the “recent” (about 7 billion years ago) universe, another accelerated expansion began due to another mysterious component, “dark energy”, which has hindered the growth of cosmic structures in the late universe. By applying machine learning and AI methods to astronomical big data such as those taken by the Subaru Telescope and other telescopes, our research aims to reveal the origins of cosmic structures of the universe ranging from the Milky Way we live in to large-scale structures, and to unveil the nature of dark matter and dark energy.

Our Milky Way Galaxy is a very special one because we live there, compared to other billions galaxies in the universe. How did the Milky Way form? – this question has always been one of astronomy's foremost research topics. Thanks to the advancement of astronomical data, enhancement of computer performance, and the development of advanced statistical techniques such as machine learning and AI, research on the origin of the Milky Way using big data of up to one billion stars has been facilitated throughout the world. Such research is also closely related to other important mysteries of the universe, including “quantum fluctuations” that were generated at the beginning of the universe and the existence and properties of “dark matter” accounting for about 86% of matter in the universe, and is expected to give an important contribution to interdisciplinary fields.

研究の内容

Details of Project

観測される膨大なデータとAIを用いて宇宙の謎に迫る Exploring the mysteries of the universe using vast amounts of observed data and AI

私たちの住む天の川銀河、銀河団、宇宙の大規模構造などの宇宙構造はどうやって出来たのか?ダークマター、ダークエネルギーはどのような影響を及ぼしてきたのか? これらは物理学・天文学における最も重要な問題です。現在考えられている標準的なシナリオは、宇宙初期の量子ゆらぎが種となり、その後ダークマターの重力の影響で進化・成長し、星を作り、それら星の集団が合体を繰り返し、天の川銀河をはじめとする宇宙の構造が形成されてきたというものです。観測によって得られた膨大な天文データをAIや機械学習の手法を用いることで、天の川銀河の成り立ち、宇宙構造の形成過程、またダークマター、ダークエネルギーの影響、さらには宇宙の初期条件の量子ゆらぎの性質について、新たな知見が得られると期待できます。

How did structures in the universe, such as our Milky Way, galaxy clusters, and large-scale structures, form? What impact have dark matter and dark energy had on the universe? They are among the most important questions in modern physics and astronomy. At present, the standard scenario is that the seed primordial fluctuations, originating from quantum fluctuations in the early universe, grow due to attractive gravitational force of dark matter, then form stars and clusters of stars, and eventually form the present-day structures including the Milky Way as a result of mergers and accretion of smaller structures. By applying AI and machine learning methods to the vast amount of astronomical data obtained from observations, we hope to gain new insights into the origin of the Milky Way, formation processes of cosmic structures, influences of dark matter and dark energy, and the nature and properties of quantum fluctuations in the early universe.

【1】天の川銀河は内部構造を観測できる唯一の天体 [1] The Milky Way is the only celestial body whose internal structure can be observed

天の川銀河は唯一観測によってその内部構造(星、ガスなどの分布、その物理状態)を詳しく調べることができる天体です。研究リーダーの村山が所属するカブリIPMUは、世界最大のカメラであるすばる望遠鏡Hyper Suprime-Cam (HSC)国際プロジェクトをリードしてきた主要研究機関です。すばる望遠鏡の集光力、シャープな画像のすばるHSCデータを活用するとともに、天の川銀河の3次元地図を作ることを目的に打ち上げられたGaia衛星から得られる星一つ一つの位置と速度の計6次元の位相空間情報を最大限利用します。

The Milky Way is only the galaxy whose internal structures (distribution of stars, gas, etc., and their physical states) can be studied in great detail by observations. The Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), to which leader Murayama belongs, is a major research institute that has been leading the international Hyper Suprime-Cam (HSC) project, the world's largest camera. For our research program, we use not only the Subaru Telescope's light-gathering power, the sharp images of the Subaru HSC data, but also make full use of the six-dimensional phase space information on the position and velocity of each star obtained from the Gaia satellite, launched for the purpose of creating a three-dimensional map of the Milky Way.

【2】天文ビックデータをAIで分析し、宇宙の構造形成の物理に迫る星々の運動を遡る [2] AI analysis of astronomical big data traces back the motions of the stars to understand the physics of the formation of cosmic structure

すばる望遠鏡のデータを始め、宇宙を調べる天文のビックデータは世界中の天文学者に共有され、宇宙の謎を解明するために使われています。このビックデータから余すことなく物理情報を引き出すことが喫緊の課題となっており、機械学習・AIの手法が強力になると期待されています。本研究では、この天文ビックデータを解析するためのAI手法を開発し、以下の研究を行います。宇宙の大規模構造の性質・進化を調べ、ダークマター、ダークエネルギーの情報を引き出し、その正体に迫ります。我々の天の川銀河の個々の星々の空間分布と運動を調べることで、天の川銀河のダークマターの情報(総量、分布)を調べます。また個々の星の空間分布と運動から、逆にその星々の運動を時間で遡ることにより、天の川銀河の起源に迫ります。さらに、ダークマターがその重力に支配的と考えられている矮小銀河(天の川銀河の衛星銀河)からのダークマター対消滅ガンマ線を探り、ダークマターの正体に迫ります。

Astronomers all over the world are sharing astronomical big data, including data from the Subaru Telescope, and are using it to uncover mysteries of the universe. Extracting the full range of physical information from this big data has become an urgent issue, and machine learning and AI methods are anticipated to contribute significantly to this effort. In this research, we will develop AI-assisted methods to analyze this astronomical big data, and carry out the following research. We aim to investigate the nature and evolution of the large-scale structures of the universe, and extract information on the nature of dark matter and dark energy. We will examine the information (total amount and distribution) of dark matter in the Milky Way by studying the spatial distribution and motions of individual stars in great detail. In addition, by tracing back motions of individual stars in time, we will explore the formation history and origin of the Milky Way. Furthermore, we will explore the nature of dark matter from a search of gamma-ray signals originating from annihilation of dark matter in dwarf galaxies (satellite galaxies of the Milky Way), where dark matter is thought to dominate the gravitational field.

価値・期待

Values / Hopes

天文物理学のアプローチとAIの融合で、人類共通の問いに答える Combining astrophysical approaches and AI to answer questions common to humanity

天の川銀河・宇宙構造の起源やダークマター、ダークエネルギーの正体、宇宙の起源・運命は、人類が長年挑んできた根本的な問題です。得られた結果は、一般講演などを通して積極的に社会に還元します。また、本研究では、量子ゆらぎ、重力の性質などの物理法則、世界最先端の観測データに基づき、「原因 (初期条件)」、「過程」、「結果」を論理的につなげ、系統的に問題を調べるアプローチを取ります。このような物理学の考え方とデータサイエンスおよび機械学習・AIという強力なツールを融合させることで、問題解決への新たな方法論の提案につなげるとともに、そうした技術を備えた高度な人材を育成し、社会に貢献することを目指します。

The origin of the Milky Way, cosmology, and the nature of dark matter and dark energy, as well as the origin and fate of the universe, are fundamental questions that humanity has been trying to answer for centuries. The results obtained will be actively returned to society through general lectures and public outreach. In this research, we adopt a systematic approach to investigate the problem by logically connecting “cause (initial conditions),” “process,” and “result” based on physical laws such as quantum fluctuations, the nature of gravity, and the world's cutting-edge observation data. By combining this approach with physics using powerful tools such as data science, machine learning, and AI, we aim to propose new methodologies for solving the problems, and to contribute to society by producing highly skilled human resources trained in such techniques.